Skip to content Skip to sidebar Skip to footer

Plotly-Dash: How To Filter Dashboard With Multiple Dataframe Columns?

I have a Python dashboard built using dash, that I want to filter on either the Investor or the Fund column. Investor Fund Period Date Symbol Shares Value 0 Rick Fund 3

Solution 1:

I am admittedly pretty new to Dash, but from what I can tell, you can achieve what you want by extending your options list, and then using an or condition in the dff that you are displaying in the Dash App to include the Fund column.

This is a bit brute force, and a nicer solution would be for Dash to know which columns your selected options are coming from. However, this would only be an issue if entries from different columns contained the same string (and here the unique values for Investor and Fund aren't ever the same).

import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd

data = {'Investor': {0: 'Rick', 1: 'Faye', 2: 'Rick', 3: 'Dre', 4: 'Faye', 5: 'Mike', 6: 'Mike', 7: 'Mike'},
        'Fund': {0: 'Fund 3', 1: 'Fund 2', 2: 'Fund 3', 3: 'Fund 4', 4: 'Fund 2', 5: 'Fund 1', 6: 'Fund 1', 7: 'Fund 1'},
        'Period Date': {0: '2019-06-30', 1: '2015-03-31', 2: '2018-12-31', 3: '2020-06-30', 4: '2015-03-31', 5: '2015-03-31', 6: '2018-12-31', 7: '2018-12-31'},
        'Symbol': {0: 'AVLR', 1: 'MEG', 2: 'BAC', 3: 'PLOW', 4: 'DNOW', 5: 'JNJ', 6: 'QSR', 7: 'LBTYA'},
        'Shares': {0: 3, 1: 11, 2: 10, 3: 2, 4: 10, 5: 1, 6: 4, 7: 3},
        'Value': {0: 9, 1: 80, 2: 200, 3: 10, 4: 100, 5: 10, 6: 20, 7: 12}}
df = pd.DataFrame.from_dict(data)

def generate_table(dataframe, max_rows=100):
    return html.Table(
        # Header
        [html.Tr([html.Th(col) for col in dataframe.columns])] +

        # Body
        [html.Tr([
            html.Td(dataframe.iloc[i][col]) for col in dataframe.columns
        ]) for i in range(min(len(dataframe), max_rows))]
    )

app = dash.Dash()
app.layout = html.Div(
    children=[html.H4(children='Investor Portfolio'),
    dcc.Dropdown(
        id='dropdown',
        ## extend the options to consider unique Fund values as well
        options=[{'label': i, 'value': i} for i in df['Investor'].unique()] + [{'label': i, 'value': i} for i in df['Fund'].unique()],
        multi=True, placeholder='Filter by Investor or Fund...'),
    html.Div(id='table-container')
])

@app.callback(dash.dependencies.Output('table-container', 'children'),
    [dash.dependencies.Input('dropdown', 'value')])

def display_table(dropdown_value):
    if dropdown_value is None:
        return generate_table(df)

    ## add an 'or' condition for the other column you want to use to slice the df 
    ## and update the columns that are displayed
    dff = df[df.Investor.str.contains('|'.join(dropdown_value)) | df.Fund.str.contains('|'.join(dropdown_value))]
    dff = dff[['Investor', 'Fund', 'Period Date', 'Symbol','Shares', 'Value']]
    return generate_table(dff)

if __name__ == '__main__':
    app.run_server(debug=True)

enter image description here


Post a Comment for "Plotly-Dash: How To Filter Dashboard With Multiple Dataframe Columns?"