Choosing Random Items From A Spark Groupeddata Object
Solution 1:
Well, it is kind of wrong. GroupedData
is not really designed for a data access. It just describes grouping criteria and provides aggregation methods. See my answer to Using groupBy in Spark and getting back to a DataFrame for more details.
Another problem with this idea is selecting N random samples
. It is a task which is really hard to achieve in parallel without psychical grouping of data and it is not something that happens when you call
groupBy on a DataFrame
:
There are at least two ways to handle this:
convert to RDD,
groupBy
and perform local samplingimport random n = 3defsample(iter, n): rs = random.Random() # We should probably use os.urandom as a seedreturn rs.sample(list(iter), n) df = sqlContext.createDataFrame( [(x, y, random.random()) for x in (1, 2, 3) for y in"abcdefghi"], ("teamId", "x1", "x2")) grouped = df.rdd.map(lambda row: (row.teamId, row)).groupByKey() sampled = sqlContext.createDataFrame( grouped.flatMap(lambda kv: sample(kv[1], n))) sampled.show() ## +------+---+-------------------+## |teamId| x1| x2|## +------+---+-------------------+## | 1| g| 0.81921738561455|## | 1| f| 0.8563875814036598|## | 1| a| 0.9010425238735935|## | 2| c| 0.3864428179837973|## | 2| g|0.06233470405822805|## | 2| d|0.37620872770129155|## | 3| f| 0.7518901502732027|## | 3| e| 0.5142305439671874|## | 3| d| 0.6250620479303716|## +------+---+-------------------+
use window functions
from pyspark.sql import Window from pyspark.sql.functions import col, rand, rowNumber w = Window.partitionBy(col("teamId")).orderBy(col("rnd_")) sampled = (df .withColumn("rnd_", rand()) # Add random numbers column .withColumn("rn_", rowNumber().over(w)) # Add rowNumber over windw .where(col("rn_") <= n) # Take n observations .drop("rn_") # drop helper columns .drop("rnd_")) sampled.show() ## +------+---+--------------------+## |teamId| x1| x2|## +------+---+--------------------+## | 1| f| 0.8563875814036598|## | 1| g| 0.81921738561455|## | 1| i| 0.8173912535268248|## | 2| h| 0.10862995810038856|## | 2| c| 0.3864428179837973|## | 2| a| 0.6695356657072442|## | 3| b|0.012329360826023095|## | 3| a| 0.6450777858109182|## | 3| e| 0.5142305439671874|## +------+---+--------------------+
but I am afraid both will be rather expensive. If size of the individual groups is balanced and relatively large I would simply use DataFrame.randomSplit
.
If number of groups is relatively small it is possible to try something else:
from pyspark.sql.functions import count, udf
from pyspark.sql.types import BooleanType
from operator import truediv
counts = (df
.groupBy(col("teamId"))
.agg(count("*").alias("n"))
.rdd.map(lambda r: (r.teamId, r.n))
.collectAsMap())
# This defines fraction of observations from a group which should# be taken to get n values
counts_bd = sc.broadcast({k: truediv(n, v) for (k, v) in counts.items()})
to_take = udf(lambda k, rnd: rnd <= counts_bd.value.get(k), BooleanType())
sampled = (df
.withColumn("rnd_", rand())
.where(to_take(col("teamId"), col("rnd_")))
.drop("rnd_"))
sampled.show()
## +------+---+--------------------+## |teamId| x1| x2|## +------+---+--------------------+## | 1| d| 0.14815204548854788|## | 1| f| 0.8563875814036598|## | 1| g| 0.81921738561455|## | 2| a| 0.6695356657072442|## | 2| d| 0.37620872770129155|## | 2| g| 0.06233470405822805|## | 3| b|0.012329360826023095|## | 3| h| 0.9022527556458557|## +------+---+--------------------+
In Spark 1.5+ you can replace udf
with a call to sampleBy
method:
df.sampleBy("teamId", counts_bd.value)
It won't give you exact number of observations but should be good enough most of the time as long as a number of observations per group is large enough to get proper samples. You can also use sampleByKey
on a RDD in a similar way.
Solution 2:
I found this one more dataframey, rather than going into rdd way.
You can use window
function to create ranking within a group, where ranking can be random to suit your case. Then, you can filter based on the number of samples (N)
you want for each group
window_1 = Window.partitionBy(data['teamId']).orderBy(F.rand())
data_1 = data.select('*', F.rank().over(window_1).alias('rank')).filter(F.col('rank') <= N).drop('rank')
Post a Comment for "Choosing Random Items From A Spark Groupeddata Object"