Python Pandas Parse Date Without Delimiters 'time Data '060116' Does Not Match Format '%dd%mm%yy' (match)'
I am trying to parse a date column that looks like the one below, date 061116 061216 061316 061416 However I cannot get pandas to accept the date format as there is no delimiter (
Solution 1:
You need add parameter errors='coerce'
to_datetime
, because 13
and 14
months does not exist, so this dates are converted to NaT
:
print (pd.to_datetime(df['Date'], format='%d%m%y', errors='coerce'))
0 2016-11-06
1 2016-12-06
2 NaT
3 NaT
Name: Date, dtype: datetime64[ns]
Or maybe you need swap months with days:
print(pd.to_datetime(df['Date'],format='%m%d%y'))02016-06-1112016-06-1222016-06-1332016-06-14Name:Date,dtype:datetime64[ns]
EDIT:
print (df)
Date
0 0611160130
1 0612160130
2 0613160130
3 0614160130
print (pd.to_datetime(df['Date'], format='%m%d%y%H%M', errors='coerce'))
0 2016-06-11 01:30:00
1 2016-06-12 01:30:00
2 2016-06-13 01:30:00
3 2016-06-14 01:30:00
Name: Date, dtype: datetime64[ns]
Solution 2:
Your date format is wrong. You have days and months reversed. It should be:
%m%d%Y
Post a Comment for "Python Pandas Parse Date Without Delimiters 'time Data '060116' Does Not Match Format '%dd%mm%yy' (match)'"