Sum Of How Many Numbers Should N Be Partitioned
Partition of integer: 4 = 4 p(4,1) = 1 = 1+3, 2+2 p(4,2) = 2 = 1+1+2 p(4,3) = 1 = 1+1+1+1 p(4,4) = 1 /max(p(4, k)) = 2, at
Solution 1:
For rather small n
values you can implicitly generate all partitions, count number of parts in every partition.
n = 7
kcounts = [0]*n
defparts(sum, last = 1, k=0):
ifsum == 0:
global kcounts
kcounts[k-1] += 1returnfor i inrange(last, sum + 1):
parts(sum - i, i, k + 1)
parts(n)
print(kcounts)
>>[1, 3, 4, 3, 2, 1, 1]
So k=3 gives maximum partitions
Solution 2:
Do the following :
N = int(input())
p = [[0]*(N+1) for i inrange(N+1)]
maximum = 0
k_number = 0
ans = []
for i inrange(N+1):
p[i][1] = 1
p[i][i] = 1for n inrange(2, N+1):
k_number, maximum = 0, 0for k inrange(2, n+1):
p[n][k] = p[n-1][k-1] + p[n-k][k]
if p[n][k] > maximum :
maximum = p[n][k]
k_number = k
n_for_max = n
ans.append([n, k_number, maximum])
print(sum(p[-1]))
for x in p:
print(sum(x))
for x in ans:
print(x)
#print('k_number: ',k_number)
Post a Comment for "Sum Of How Many Numbers Should N Be Partitioned"