Balanced Error Rate As Metric Function
Solution 1:
A way to get the array dimensions / an explanation why shape acts like it does / the reason why
y_true
seems to have 0 dimensions
The deal with print
and abstraction libraries like Theano is that you usually do not get the values but a represenation of the value. So if you do
print(foo.shape)
You won't get the actual shape but a representation of the operation that is done at runtime. Since this is all computed on an external device the computation is not run immediately but only after creating a function with appropriate inputs (or calling foo.shape.eval()
).
Another way to print the value is to use theano.printing.Print
when using the value, e.g.:
shape = theano.printing.Print('shape of foo')(foo.shape)
# use shape (not foo.shape!)
A method to create a tensor matrix with a given with/height by repeating a given row/column vector.
See theano.tensor.repeat
for that. Example in numpy (usage is quite similar):
>>> x
array([[1, 2, 3]])
>>> x.repeat(3, axis=0)
array([[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])
Post a Comment for "Balanced Error Rate As Metric Function"