How To Use Functions With Pandas Dataframe
How can I use function with pandas dataframe. For example: a | b london | uk newyork | usa berlin | germany df1 = df[['a', 'b']] def doSomething(df1): return df1 doS
Solution 1:
You can use:
df = pd.DataFrame({'a':['london','newyork','berlin'],
'b':['uk','usa','germany'],
'c':[7,8,9]})
print (df)
df1 = df[['a', 'b']]
defdoSomething(x):
return x.a
#function works with DataFrame print (doSomething(df1))
0 london
1 newyork
2 berlin
Name: a, dtype: object#function works with Series, columns are transformed to index of Series#return for each row value of Series with index a which is transformed to column in output dfprint (df1.apply(doSomething, axis=1))
0 london
1 newyork
2 berlin
dtype: object
If need applymap
it works with each element of df
:
defdoSomething(x):
return x + '___'#function works with elementprint (df1.applymap(doSomething))
a b
0 london___ uk___
1 newyork___ usa___
2 berlin___ germany___
Solution 2:
df1 = df[['a', 'b']]
def doSomething(df):
df2 = df['a']
return df2
df3 = df1.apply(doSomething, axis=1)
df3 = pd.DataFrame(df3).rename(columns={0: 'a'})
Post a Comment for "How To Use Functions With Pandas Dataframe"