Defining Pandas Column Based On Combination Of Input Other Columns
I want to create a new column in my pandas dataframe based on values in already existing columns. The input of the new column should be boolean. At the moment I am trying the follo
Solution 1:
There is problem not enclosing parentheses:
df_edit['test'] = (df_edit['Included'] ==False) & \
(df_edit['Update Check'] ==True) & \
((df_edit['duplicate_fname'] ==True) |
(df_edit['duplicate_targetfname'] ==True))
print (df_edit)
Included UpdateCheck duplicate_fname duplicate_targetfname test
0FalseTrueTrueFalseTrue1FalseTrueFalseFalseFalse2TrueTrueFalseFalseFalse3FalseTrueFalseFalseFalse
But better is use ~
for invert boolean mask and omit compare with True
s:
df_edit['test'] =~df_edit['Included'] &
df_edit['Update Check'] &
(df_edit['duplicate_fname'] | df_edit['duplicate_targetfname'])
print (df_edit)
Included UpdateCheck duplicate_fname duplicate_targetfname test
0FalseTrueTrueFalseTrue1FalseTrueFalseFalseFalse2TrueTrueFalseFalseFalse3FalseTrueFalseFalseFalse
Post a Comment for "Defining Pandas Column Based On Combination Of Input Other Columns"