Neural Network Backpropagation Algorithm Not Working In Python
Solution 1:
I think you train the NN in the wrong way. You have a loop over 10000 iterations and feed a new sample in each cycle. The NN will never get trained in this case.
(the statement is wrong! See the update! )
What you need to do is to generate a large array of true samples Y = sin(X)
, give it to your network ONCE and iterate over the training set forwards and backwards, in order to minimize the cost function. To check the algorithm you may need to plot the cost function depending on the iteration number and make sure the cost goes down.
Another important point is the initialization of the weights. Your numbers are pretty large and the network will take a lot of time to converge, especially when using low rates. It's a good practice to generate the initial weights in some small range [-eps .. eps]
uniformly.
In my code I implemented two different activation functions: sigmoid()
and tanh()
. You need to scale your inputs depending on the selected function: [0 .. 1]
and [-1 .. 1]
respectively.
Here are some images which show the cost function and the resulting predictions for sigmoid()
and tanh()
activation functions:
As you can see the sigmoid()
activation gives a little bit better results, than the tanh()
.
Also I got much better predictions when using a network [1, 6, 1]
, compared to a bigger network with 4 layers [1, 6, 4, 1]
. So the size of the NN is not always the crucial factor. Here is the prediction for the mentioned network with 4 layers:
Here is my code with some comments. I tried to use your notations where it was possible.
import numpy as np
import math
import matplotlib.pyplot as plt
classNeuralnet:
def__init__(self, neurons, activation):
self.weights = []
self.inputs = []
self.outputs = []
self.errors = []
self.rate = 0.5
self.activation = activation #sigmoid or tanh
self.neurons = neurons
self.L = len(self.neurons) #number of layers
eps = 0.12; # range for uniform distribution -eps..+eps for layer inrange(len(neurons)-1):
self.weights.append(np.random.uniform(-eps,eps,size=(neurons[layer+1], neurons[layer]+1)))
################################################################################################### deftrain(self, X, Y, iter_count):
m = X.shape[0];
for layer inrange(self.L):
self.inputs.append(np.empty([m, self.neurons[layer]]))
self.errors.append(np.empty([m, self.neurons[layer]]))
if (layer < self.L -1):
self.outputs.append(np.empty([m, self.neurons[layer]+1]))
else:
self.outputs.append(np.empty([m, self.neurons[layer]]))
#accumulate the cost function
J_history = np.zeros([iter_count, 1])
for i inrange(iter_count):
self.feedforward(X)
J = self.cost(Y, self.outputs[self.L-1])
J_history[i, 0] = J
self.backpropagate(Y)
#plot the cost function to check the descent
plt.plot(J_history)
plt.show()
################################################################################################### defcost(self, Y, H):
J = np.sum(np.sum(np.power((Y - H), 2), axis=0))/(2*m)
return J
###################################################################################################deffeedforward(self, X):
m = X.shape[0];
self.outputs[0] = np.concatenate( (np.ones([m, 1]), X), axis=1)
for i inrange(1, self.L):
self.inputs[i] = np.dot( self.outputs[i-1], self.weights[i-1].T )
if (self.activation == 'sigmoid'):
output_temp = self.sigmoid(self.inputs[i])
elif (self.activation == 'tanh'):
output_temp = np.tanh(self.inputs[i])
if (i < self.L - 1):
self.outputs[i] = np.concatenate( (np.ones([m, 1]), output_temp), axis=1)
else:
self.outputs[i] = output_temp
###################################################################################################defbackpropagate(self, Y):
self.errors[self.L-1] = self.outputs[self.L-1] - Y
for i inrange(self.L - 2, 0, -1):
if (self.activation == 'sigmoid'):
self.errors[i] = np.dot( self.errors[i+1], self.weights[i][:, 1:] ) * self.sigmoid_prime(self.inputs[i])
elif (self.activation == 'tanh'):
self.errors[i] = np.dot( self.errors[i+1], self.weights[i][:, 1:] ) * (1 - self.outputs[i][:, 1:]*self.outputs[i][:, 1:])
for i inrange(0, self.L-1):
grad = np.dot(self.errors[i+1].T, self.outputs[i]) / m
self.weights[i] = self.weights[i] - self.rate*grad
###################################################################################################defsigmoid(self, z):
s = 1.0/(1.0 + np.exp(-z))
return s
###################################################################################################defsigmoid_prime(self, z):
s = self.sigmoid(z)*(1 - self.sigmoid(z))
return s
###################################################################################################defpredict(self, X, weights):
m = X.shape[0];
self.inputs = []
self.outputs = []
self.weights = weights
for layer inrange(self.L):
self.inputs.append(np.empty([m, self.neurons[layer]]))
if (layer < self.L -1):
self.outputs.append(np.empty([m, self.neurons[layer]+1]))
else:
self.outputs.append(np.empty([m, self.neurons[layer]]))
self.feedforward(X)
return self.outputs[self.L-1]
#################################################################################################### MAIN PART
activation1 = 'sigmoid'# the input should be scaled into [ 0..1]
activation2 = 'tanh'# the input should be scaled into [-1..1]
activation = activation1
net = Neuralnet([1, 6, 1], activation) # structure of the NN and its activation function########################################################################################### TRAINING
m = 1000#size of the training set
X = np.linspace(0, 4*math.pi, num = m).reshape(m, 1); # input training set
Y = np.sin(X) # target
kx = 0.1# noise parameter
noise = (2.0*np.random.uniform(0, kx, m) - kx).reshape(m, 1)
Y = Y + noise # noisy target# scaling of the target depending on the activation functionif (activation == 'sigmoid'):
Y_scaled = (Y/(1+kx) + 1)/2.0elif (activation == 'tanh'):
Y_scaled = Y/(1+kx)
# number of the iteration for the training stage
iter_count = 20000
net.train(X, Y_scaled, iter_count) #training# gained weights
trained_weights = net.weights
########################################################################################### PREDICTION
m_new = 40#size of the prediction set
X_new = np.linspace(0, 4*math.pi, num = m_new).reshape(m_new, 1);
Y_new = net.predict(X_new, trained_weights) # prediction#rescaling of the result if (activation == 'sigmoid'):
Y_new = (2.0*Y_new - 1.0) * (1+kx)
elif (activation == 'tanh'):
Y_new = Y_new * (1+kx)
# visualization
plt.plot(X, Y)
plt.plot(X_new, Y_new, 'ro')
plt.show()
raw_input('press any key to exit')
UPDATE
I would like to take back the statement regarding the training method used in your code. The network can be indeed trained using only one sample per iteration. I got interesting results in online-training using both sigmoid and tanh activation functions:
Online-training using Sigmoid (cost function and prediction)
Online-training using Tanh (cost function and prediction)
As can be seen the choice of Sigmoid as activation function gives better performance. The cost function looks not that good as during the offline-training, but at least it tends to go down.
I plotted the cost function in your implementation, it looks pretty jerky as well:
May be it is a good idea to try your code with the sigmoid or even the ReLU function.
Here is the updated source code. To switch between online
and offline
training modes just change the method
variable.
import numpy as np
import math
import matplotlib.pyplot as plt
classNeuralnet:
def__init__(self, neurons, activation):
self.weights = []
self.inputs = []
self.outputs = []
self.errors = []
self.rate = 0.2
self.activation = activation #sigmoid or tanh
self.neurons = neurons
self.L = len(self.neurons) #number of layers
eps = 0.12; #range for uniform distribution -eps..+eps for layer inrange(len(neurons)-1):
self.weights.append(np.random.uniform(-eps,eps,size=(neurons[layer+1], neurons[layer]+1)))
################################################################################################### deftrain(self, X, Y, iter_count):
m = X.shape[0];
for layer inrange(self.L):
self.inputs.append(np.empty([m, self.neurons[layer]]))
self.errors.append(np.empty([m, self.neurons[layer]]))
if (layer < self.L -1):
self.outputs.append(np.empty([m, self.neurons[layer]+1]))
else:
self.outputs.append(np.empty([m, self.neurons[layer]]))
#accumulate the cost function
J_history = np.zeros([iter_count, 1])
for i inrange(iter_count):
self.feedforward(X)
J = self.cost(Y, self.outputs[self.L-1])
J_history[i, 0] = J
self.backpropagate(Y)
#plot the cost function to check the descent#plt.plot(J_history)#plt.show()################################################################################################### defcost(self, Y, H):
J = np.sum(np.sum(np.power((Y - H), 2), axis=0))/(2*m)
return J
###################################################################################################defcost_online(self, min_x, max_x, iter_number):
h_arr = np.zeros([iter_number, 1])
y_arr = np.zeros([iter_number, 1])
for step inrange(iter_number):
x = np.random.uniform(min_x, max_x, 1).reshape(1, 1)
self.feedforward(x)
h_arr[step, 0] = self.outputs[-1]
y_arr[step, 0] = np.sin(x)
J = np.sum(np.sum(np.power((y_arr - h_arr), 2), axis=0))/(2*iter_number)
return J
###################################################################################################deffeedforward(self, X):
m = X.shape[0];
self.outputs[0] = np.concatenate( (np.ones([m, 1]), X), axis=1)
for i inrange(1, self.L):
self.inputs[i] = np.dot( self.outputs[i-1], self.weights[i-1].T )
if (self.activation == 'sigmoid'):
output_temp = self.sigmoid(self.inputs[i])
elif (self.activation == 'tanh'):
output_temp = np.tanh(self.inputs[i])
if (i < self.L - 1):
self.outputs[i] = np.concatenate( (np.ones([m, 1]), output_temp), axis=1)
else:
self.outputs[i] = output_temp
###################################################################################################defbackpropagate(self, Y):
self.errors[self.L-1] = self.outputs[self.L-1] - Y
for i inrange(self.L - 2, 0, -1):
if (self.activation == 'sigmoid'):
self.errors[i] = np.dot( self.errors[i+1], self.weights[i][:, 1:] ) * self.sigmoid_prime(self.inputs[i])
elif (self.activation == 'tanh'):
self.errors[i] = np.dot( self.errors[i+1], self.weights[i][:, 1:] ) * (1 - self.outputs[i][:, 1:]*self.outputs[i][:, 1:])
for i inrange(0, self.L-1):
grad = np.dot(self.errors[i+1].T, self.outputs[i]) / m
self.weights[i] = self.weights[i] - self.rate*grad
###################################################################################################defsigmoid(self, z):
s = 1.0/(1.0 + np.exp(-z))
return s
###################################################################################################defsigmoid_prime(self, z):
s = self.sigmoid(z)*(1 - self.sigmoid(z))
return s
###################################################################################################defpredict(self, X, weights):
m = X.shape[0];
self.inputs = []
self.outputs = []
self.weights = weights
for layer inrange(self.L):
self.inputs.append(np.empty([m, self.neurons[layer]]))
if (layer < self.L -1):
self.outputs.append(np.empty([m, self.neurons[layer]+1]))
else:
self.outputs.append(np.empty([m, self.neurons[layer]]))
self.feedforward(X)
return self.outputs[self.L-1]
#################################################################################################### MAIN PART
activation1 = 'sigmoid'#the input should be scaled into [0..1]
activation2 = 'tanh'#the input should be scaled into [-1..1]
activation = activation1
net = Neuralnet([1, 6, 1], activation) # structure of the NN and its activation function
method1 = 'online'
method2 = 'offline'
method = method1
kx = 0.1#noise parameter#################################################################################################### TRAININGif (method == 'offline'):
m = 1000#size of the training set
X = np.linspace(0, 4*math.pi, num = m).reshape(m, 1); #input training set
Y = np.sin(X) #target
noise = (2.0*np.random.uniform(0, kx, m) - kx).reshape(m, 1)
Y = Y + noise #noisy target#scaling of the target depending on the activation functionif (activation == 'sigmoid'):
Y_scaled = (Y/(1+kx) + 1)/2.0elif (activation == 'tanh'):
Y_scaled = Y/(1+kx)
#number of the iteration for the training stage
iter_count = 20000
net.train(X, Y_scaled, iter_count) #trainingelif (method == 'online'):
sampling_count = 100000# number of samplings during the training stage
m = 1#batch size
iter_count = sampling_count/m
for layer inrange(net.L):
net.inputs.append(np.empty([m, net.neurons[layer]]))
net.errors.append(np.empty([m, net.neurons[layer]]))
if (layer < net.L -1):
net.outputs.append(np.empty([m, net.neurons[layer]+1]))
else:
net.outputs.append(np.empty([m, net.neurons[layer]]))
J_history = []
step_history = []
for i inrange(iter_count):
X = np.random.uniform(0, 4*math.pi, m).reshape(m, 1)
Y = np.sin(X) #target
noise = (2.0*np.random.uniform(0, kx, m) - kx).reshape(m, 1)
Y = Y + noise #noisy target#scaling of the target depending on the activation functionif (activation == 'sigmoid'):
Y_scaled = (Y/(1+kx) + 1)/2.0elif (activation == 'tanh'):
Y_scaled = Y/(1+kx)
net.feedforward(X)
net.backpropagate(Y_scaled)
if (np.remainder(i, 1000) == 0):
J = net.cost_online(0, 4*math.pi, 1000)
J_history.append(J)
step_history.append(i)
plt.plot(step_history, J_history)
plt.title('Batch size ' + str(m) + ', rate ' + str(net.rate) + ', samples ' + str(sampling_count))
#plt.ylim([0, 0.1])
plt.show()
#gained weights
trained_weights = net.weights
########################################################################################### PREDICTION
m_new = 40#size of the prediction set
X_new = np.linspace(0, 4*math.pi, num = m_new).reshape(m_new, 1);
Y_new = net.predict(X_new, trained_weights) #prediction#rescaling of the result if (activation == 'sigmoid'):
Y_new = (2.0*Y_new - 1.0) * (1+kx)
elif (activation == 'tanh'):
Y_new = Y_new * (1+kx)
#visualization#fake sine curve to show the ideal signalif (method == 'online'):
X = np.linspace(0, 4*math.pi, num = 100)
Y = np.sin(X)
plt.plot(X, Y)
plt.plot(X_new, Y_new, 'ro')
if (method == 'online'):
plt.title('Batch size ' + str(m) + ', rate ' + str(net.rate) + ', samples ' + str(sampling_count))
plt.ylim([-1.5, 1.5])
plt.show()
raw_input('press any key to exit')
Now I have some remarks to your current code:
Your sine function looks like this:
def sine_example():
net = Neuralnet([1, 6, 1])
for step in range(100000):
x = np.random.normal()
net.feedforward([x])
net.backpropagate([np.tanh(np.sin(x))])
net.feedforward([3])
print(net.outputs[-1])
I don't know why you use tanh in your target input. If you really want to use tanh of sine as target, you need to scale it to [-1..1]
, because tanh(sin(x)) returns values in range [-0.76..0.76]
.
The next thing is the range of your training set. You use x = np.random.normal()
to generate the samples. Here is the distribution of such an input:
After it you want your network to predict the sine of 3
, but the network has almost never seen this number during the training stage. I would use the uniform distribution in a wider range for sample generation instead.
Post a Comment for "Neural Network Backpropagation Algorithm Not Working In Python"